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Ah&act-By following the formalism of extended irreversible thermodynamics, we obtain a hierarchy of 
evolution equations for the higher-order fluxes in heat conduction. We study the influence of the higher- 
order fluxes on the speed of thermal waves in the second-, third- and fourth-order approximations, as well 

as in the asymptotic limit of infinite higher-order fluxes. 

INTRODUCTION 

HEAT WAVES and hyperbolic heat transport are very 
active topics of research, from the experimental, 
theoretical and computational points of view. The 
literature, on the subject has been recently reviewed in 
refs. [l, 21, and other useful references covering a 
wide literature are refs. [3-6]. The need of transport 
equations leading to a finite signal speed in heat con- 
duction has been one of the incentives to develop a 
new thermodynamic formalism, known as extended 
irreversible thermodynamics (EIT) [ 1, 7-l 21, which 
goes beyond the local-equilibrium assumption which 
is the starting point of the classical irreversible ther- 
modynamics [ 131. 

In the standard version of EIT [l], the usual dis- 
sipative fluxes (heat flux, diffusion flux, viscous press- 
ure tensor, etc.) are considered as independent ther- 
modynamic variables. A generalized nonequilibrium 
entropy is defined which depends not only on its classi- 
cal variables, but also on the dissipative fluxes. 
Whereas the evolution of the former ones is described 
by the balance laws of mass, momentum and energy, 
the equations describing the evolution of the latter 
ones must be found for each material in such a way 
that they are compatible with the second law of ther- 
modynamics. The inclusion of the heat flux q as inde- 
pendent variable leads, in the simplest situation, to an 
evolution equation for q which is precisely the well- 
known Maxwell-Cattaneo equation 

2, dq/dt+q = -LVT (1) 

with r, a relaxation time, 1 the thermal conductivity 
and T the absolute temperature. When equation (1) 
is introduced into the energy balance equation 

pcdT/dt = -V-q (2) 

with p the mass density and c a specific heat per unit 

7 Also at Institut d’Estudis Catalans. 

mass, it leads to a finite speed for thermal signals (the 
high-frequency limit of the phase speed of thermal 
waves), given by 

&c = (x/r,) (3) 

with x = I/@) the thermal diffusivity. 
One of the problems in equation (1) is to determine 

the relaxation time z 1. In the simplest versions, it 
may be identified with the mean-free time between 
consecutive collisions, or, in more elaborate versions, 
with the inverse of the eigenvalue of the collision oper- 
ator associated with q. 

The problem we deal with here is the following one. 
The relaxation time z, is certainly of the order of 
the mean-free time between collision, z,,,. Since the 
relaxation times of the higher-order fluxes (the flux of 
the heat flux and so on) will also be of the order of rco,, 
it turns out that in the situations when the frequency is 
of the order of l/z,,,, not only the heat flux q, but 
all the higher-order fluxes should be considered as 
independent variables. We have formulated [l&18] 
the corresponding version of EIT and we have 
explored some of its consequences up to the second 
order, i.e. up to the inclusion of the flux of the heat 
flux and the heat flux itself as independent variables. 

The purpose of this paper is to study the intluence 
of the higher-order fluxes on the speed of thermal 
signals, both in the lower-order approximations as in 
the many-order, asymptotic limit. 

In the first section we write the fundamental 
hypotheses of EIT and the corresponding evolution 
equations for the fluxes. In the second, we obtain the 
dispersion equations for thermal waves in the second-, 
third- and fourth-order approximations. In the third 
section we write the frequency- and wavelength- 
dependent thermal conductivity, and use an asymp- 
totic development for continued-fraction expansions 
to obtain an effective time for the relaxation of the 
heat flux taking into account the effect of an infinite 
number of higher-order fluxes. 
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NOMENCLATURE 

c specific heat per unit mass 

D, elementary hyperbolic operator 
H,,( x, k) nth-order continued fraction 

expansion of the thermal conductivity 
with unit numerator 
entropy flux 

wave vector 
Boltzmann constant 
heat flux 

nth-order flux 
fluctuation of q around equilibrium 
specific entropy per unit mass 
second differential of the entropy 
absolute temperature 
specific internal energy per unit 
mass 

specific volume per unit mass 
speed of thermal pulses in 
Maxwell-Cattaneo theory. 

Greek symbols 

% entropy coefficients 

1L entropy flux coefficients 

(‘,, phenomenological coefficients in the 
evolution equations 

i, thermal conductivity 

‘-,, higher-order transport coefficients in the 
evolution equations 

i(rr), LI) frequency- and wave 

vector-dependent conductivity 

I’ mass density 
ci entropy production per unit volume 

and time 

TI relaxation time of the heat flux 

^c,I effective relaxation time of the heat flux 

rrr relaxation time of the nth order flux 

T,<,I mean-free time 

X thermal diffusivity 
(I) frequency. 

Other symbols 

Cl, D’Alcmbertian operator 
? r:,, 0, partial derivative with respect to 

time, space. 

EXTENDED THERMODYNAMICS WITH In accordance with the postulates of EIT [I], one 
HIGHER-ORDER FLUXES assumes a generalized Gibbs entropy of the form [ 151 

In contrast with the usual nonequilibrium ther- 

modynamics, based on the local-equilibrium hypo- 
thesis, EIT [l] assumes that, out of equilibrium, the 

entropy is no longer the local-equilibrium one but that 
it depends on the dissipative fluxes. In some situations, 
these fluxes may be related to some internal variables 

of the system : the viscous pressure tensor in polymeric 
solutions, for instance, is related to the con- 
formational tensor of the macromolecules. In other 
situations, as in monatomic ideal gases, th,-: fluxes do 
not bear relation to any internal variable at all. 

ds = T ’ du - c i x,,q,, . dq,, (4) 
,I- I 

with Tabsolute temperature, D specific volume and x,, 
a set of coefficients, which may depend in principle on 
u, and on the scalar invariants of the tensors, and 
whose physical meaning will be seen in the evolution 
equations for the fluxes. A dot between two tensors 
means their total mutual contraction to give a scalar. 

I.e. qPI*qP, = q(,,, ,,q+ ,,. with summation over 
repeated indices. 

To keep a maximum simplicity in the arguments, 
we will restrict ourselves to heat transport in a rigid 
heat conductor. The usual version of extended irre- 
versible thermodynamics takes as independent vari- 

ables the specific internal energy per unit mass, u, and 
the heat flux q, and assumes a nonequilibrium specific 

entropy s which depends on II and q, s(u,q). In a 
more general version [15], one takes as independent 
variables u, q,, q,, , qn, . with q. (an nth order 
tensor) the flux of q._ , (an n - I order tensor). Here, 
ql is identified with q. Note that in a system of N 
particles, a macroscopic description is based on a 
small number of variables (mass, energy, momentum, 
etc.), whereas from a microscopic point of view one 
would need 6N variables. The inclusion of more and 
more higher-order fluxes provides different meso- 
scopic descriptions intermediate between the macro- 
scopic (thermodynamic) one and the microscopic one. 

As well as the entropy. the entropy flux J’ ix 
assumed to depend on a11 dissipative fluxes. Thus, one 
assumes that 

J” = T ‘4, - iB,q,,+ I *q,, 
I 

(5) 

where the dot means the total contraction of q,,+ , and 

q. to give a vector. i.e. qn+,*q,2 =- q,, ,\, ,q,, ,., with 
summation over repeated indices. The 8, are par- 
ameters (possibly functions of u and of the scalar 
invariants of the fluxes), whose meaning will also be 
identified in the evolution equations of the fluxes. 

When the energy balance equation (2) with 
c dT = du is used, one finds for the time derivative 

OSS 

I 

Pds/dt= -V.(T ‘q)+q.V7’ ‘- c x,q;dq,ldr. 
ri - I 

(6) 
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The entropy production (r is found, as usual, from the 
general form of a balance equation 

p&/dt+V.J”=rr. (7) 

Introduction of equations (5) and (6) into equation 
(7) yields 

o = -9, *[T-*VT+a, dq,/dt+B,V.q,] 

+V@- tqn- ,)I. (8) 

Note that up to the Nth order, one assumes that 
qM=O for A42 N+l, and the term QN#I~V*QN+, 
would not be present in equation (8). In equation (8) 
we assume tacitly that this absence is not important 
in the limit when N -+ co. This assumption is common 
to all higher-order kinetic theory developments [19], 
but it is in fact difficult to show rigorously. 

We will assume here a linear situation, in which the 
parameters involved in the theory do not depend on 
the fluxes themselves. Inclusion of some nonlinear 
effects leads to features not included in the linear 
theory as, for instance [16] a difference in the speed 
of thermal waves along and against a superimposed 
temperature gradient. The aim of this paper is to point 
the influence of higher-order fluxes on the speed of 
high-frequency, low-amplitude thermal waves, so that 
the complications of a nonlinear theory may be 
avoided here. 

The simplest set of linear evolution equations com- 
patible with the positive definite character of the 
entropy production (8) is 

T-‘VT+cr, dq,/dt+/?,V.q, = -B,q, (9) 

u,dq,ldt+B,V*q,+ I +vm- 1% I> = -bL 

(10) 

with 8, > 0. Note that 0, may be identified as (AT’)- ’ 
and the relaxation times r, of q,, as r, = (a,#,). The 
definition of q,,+, as the flux of qn implies /?. = 0,. 
Then, one may rewrite equations (9) and (10) as 

r, dq,ldt = -LVT-q, -V-q, (11) 

r, dq,/dt = -I,Vq,_, -q,, -V-q,_, (12) 

with 1, = (0,_ r/S,> = (r,/r,_ ,)(a,_ ,/a,). Note that 
an alternative definition of q,, as flux could have been 
to assume that j$ = CI, ; the corresponding set of equa- 
tions would be essentially equivalent to the present 
one. This hierarchy of equations, where the time 
derivative of qn depends on q,,+ ,, will be the basis of 
our discussion. Note that if one assumes qi = 0 for 
i 2 2, equations (11) and (12) reduce to the Maxwell- 
Cattaneo expression (1). 

We have achieved a description of the evolution of 
the system in terms of two sets of parameters : 1, and 
t, (or alternatively a, and 2,). The parameters t(, may 

be easily related to the second moments of the fluc- 
tuations of the fluxes around the equilibrium. Indeed, 
by writing the Einstein formula for the probability of 
fluctuations [l] 

Pr N exp [6*s/2k,] 

with k, the Boltzmann constant, one finds 

(13) 

Pr(&) N cxp 1 - (~~,/2k&% - %I. (14) 

The second moments of the fluctuations may be easily 
related to the LX, as 

<&,,...,&,,,...,) = (2klna,) (15) 

with the angular brackets standing for an equilibrium 
average and 6q, the fluctuation of the xx.. .x com- 
ponents of qn. Relation (15) allows the evaluation 
from purely equilibrium statistical mechanics the par- 
ameters CL,, whereas the relaxation times r, are of 
dynamical nature and are related to the collision oper- 
ator characteristic of the system. 

LOWER-ORDER APPROXIMATIONS 

To see in an explicit way how the presence of higher- 
order fluxes influences the speed of thermal waves, we 
will first write equations (11) and (12) in a uni- 
dimensional case up to the fourth order. We have 

with L2 = 
will write 

(z2/~&&2> and 13 = (23/z2)(t12/a3h We 

explicitly the second-, third- and fourth- 
order approximations, and will compare them with 
the general form [20] 

pd,T = O-&q, +0+0 

z,a,q, = -na,r-q, -a+q*+o 

z2a,q2 = 0-A2axq, -q24q, 

Z3arq3 = 0+O-~3axq2-q3 (16) 

M”‘T= r],D,T+qoT 

+?2DzD,T+q,D,T+qoT= 0 (17) 

with Di = a,+&. The symbols a, and d, denote 
respectively the partial derivatives with respect to t 
and x. 

The second-order approximation (q2 = q3 = 0) to 
equation (16) is 

q 2+~,ar = kg*) (18) 

with q i = 8: -eta: the D’Alembert operator related 
to the speed ci. Here, q1 = r; ’ and the speed of the 
waves is 

c: = (x/r,) (19) 

which is the speed (2) of the classical Maxwell-Cat- 
taneo equation. 
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Up to the third-order approximation (q3 = 0), one 
has 

where 

a,o,+~;o,+rJ’,a, = MS3’ (20) 

YJ’z = r,‘+r;‘,$, = (727,)j’ 

c;? = x[7, +72]- ’ 

and the signal speed 

c’4? = (x/7,)+(&/7,72) 

instead of equation (19). 

(21) 

In the fourth-order approximation (qn = 0), i.e. the 
full (16) expression, one has 

?J; = 7;‘+7l’+75’,Y/; = (7,7?) ' 

+(7s,) '+(7,73)-~',$; = (7,7*73)-' 

,I z 
C2 = X[7,+7*+73]- ', 

4' = [(7*+73)X+(~2+~))1[7,+7*+7j]~' 

and the signal speeds cl; and c; given by 

c’;2+c;* = (x/7,)+(~.*/7,7*)+(~3/7*73) 

c;2c';2 = (x/7,)(i3/7z73). (23) 

We see that the system is not strictly hyperbolic, in 
the sense that the velocities of the characteristics are 
degenerate, but symmetric hyperbolic. In ref. [20], 
an expression for the Lagrangians leading to these 
equations is given. 

Expressions (19), (21) and (23) show the influence 
of the first higher-order fluxes on the speed of thermal 
waves. As an explicit illustration, we may consider the 
equations used to describe phonon hydrodynamics in 
dielectric solids [ 1, 16, 211. Such equations yield, in 
the notation used in this paper, to 

x = (1/3X7,, 1”? = ( l/5)C;tN7a 

with c0 the phonon velocity, and zR and 7N the resistive 
and normal collision times, respectively, which turn 

out to be the relaxation times of q, and of q2, respec- 
tively. Thus, the speed in the first-order approxi- 

mation, as given by equation (19). is c: = (1/3)ci 
whereas in the second-order approximation one has 

from equation (21) cs = (8/15)ci. To our knowledge, 
only these two fluxes have been considered in dealing 
with solids. 

How many higher-order fluxes should be included 
in the description depends on the spectrum of the 
collision operator. If there are a few fluxes with rela- 
tively long times and the other ones have much shorter 
relaxation times, it is sufficient to keep only the former 
ones as independent variables. However, in the kinetic 
theory of gases, all the higher-order fluxes have relax- 
ation times of the same order, at least in the relaxation- 
time approximation, and even in more complicated 

models [ 191. Thus, to consider only a few independent 
higher-order fluxes is, in principle, conceptually 
inconsistent: an infinite number of them should be 
taken into account. Thus, an asymptotic development 
for the speed of thermal waves should be devised. 

ASYMPTOTIC EXPRESSION AND EFFECTIVE 

RELAXATION TIME 

The hierarchy (16) may be written as a generalized 
frequency- and wave vector-dependent thermal con- 
ductivity i(o, k). Such generalized coefficients are 

much used in generalized hydrodynamics and in rhe- 
ology. We may write the hierarchy (11) and (12) in 
the Fourier space, assuming vanishing initial values 
of the q,,, as 

iwT,ij, = -ikAf-4, -ik*Q2 

io7&, = ik&&, -an-ik*(i,,+, (24) 

with o the frequency, k the wave vector and ’ the 
corresponding Fourier transform. From equation 
(24) one may write for the Fourier transform of the 
heat flux 

4, = -ikl(w,k)f (25) 

with n(w, k) given by 

(26) 

with 12 = (7p, ,/7,_ ,a,) = i,. The truncations of 

this continued fraction should be made by assuming 
that all 7, up to order n and all 1: up to order n - 1 are 
different from zero, and that 12 = 0. The simplest non- 
trivial approximations to equation (26) arc 

(27) 

corresponding to the Maxwell-Cattaneo approxi- 
mation. The second approximation would be 

i 
(28) 

One may obtain an asymptotic expression for equa- 
tion (26) by using the scheme proposed in ref. [22]. 
We define I,(w, k) as the nth order approximation to 
equation(26)(7,=Oform>n+l,I~=Oform>nj 
and we define H,,(w, k) as 

H,(w, k) = (l/n)&(w, kj (29) 

so that H,(o, k) is a continued fraction of order n 
with the first numerator normalized to unity. In the 
asymptotic limit, one assumes [22] 
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H, (0, k) = 
1 

1 +ioz,+I~k2H,(w, k)’ (30) 

This scheme has proved sufficiently accurate in several 
areas of physics [22]. 

From equation (30) we have 

&(o,k) = 

-(1+ioz,)+[(1-l-ioz,)2+4Z~k2]‘i2 

21;k2 (31) 

with z, and ZL the values of z,, and Z: in the limit of 
high n. 

The dispersion equation for thermal waves in this 
limit is 

pcio = -Ak2H,(o, k). (32) 

In the high-frequency limit (WZ, >> l), equations (31) 
and (32) yield 

iw = (x/Z/i)[iwr, + (41ik* -co~T~)~‘~]. (33) 

This leads for the phase speed to 

c: = k’/G1K&/L3 - II- ‘. (34) 

This expression allows one to define an effective or 
‘renormalized’ time which takes into account the effect 
of all the higher-order fluxes on the relaxation of q. 
We define z,r, the effective time, as 

c; = (Xi%) (35) 

in accordance with equation (3). Comparison of equa- 
tions (34) and (35) yields 

rL+ = r, - (EJX). (36) 

In the case when all the relaxation times have the same 
value (relaxation-time approximation) and if 12 is 
very small, r,r is equal to the relaxation time or col- 
lision time. Some effective relaxation times have been 
computed in very different situations in ref. [23]. 

CONCLUSIONS 

The development presented here is of interest, 
because it allows in a certain way to reduce the set of 
infinite number of fast variables to a few fast variables 
(in our case, to the heat flux). Undoubtedly, much 
information is lost in this reduction procedure, but 
at least the speed signals include the most relevant 
complexities of the system. The situation is similar to 
the one presented near critical points : in these ones, 
the order parameter and all its combinations become 
slow variables, or, from another point of view, the 
fluctuations of all scales become important. The 
renormalization group technique allows one to re- 
define the parameters of the theory in such a way that 
reducing the number of variables one does not lose 
fundamental information. In our case, not only the 
heat flux but an infinite set of higher-order fluxes 
become slow variables (in comparison with the fre- 
quency of the experiment), and we have tried to obtain 

a recipe to reduce the description of the system to a 
small number of variables without losing essential 
information about the signal speed. 

The situation is not always that depicted in this 
asymptotic situation. In other cases, as in solids at 
low temperatures [21], there is a big difference between 
the relaxation time of q, and that of q2 and of the 
higher-order fluxes. Thus, in this case a low approxi- 
mation may be valid. In fact, a development with q, 
and q2 different from zero but with z2 = 0 was used 
by Guyer and Krumhansl to describe second sound 
and phonon hydrodynamics in dielectric solids at low 
temperatures [21]. Their equation is a particular cast of 
equation (16) but it is parabolic instead of hyperbolic. 
In fact, their second sound speed is a plateau limit for 
frequencies higher than zi ’ but lower than z; ’ . 

A rough estimation of the effects of equation (36) 
could be obtained by assuming that 12 = vzr2 with 
v,” = (kBT/m), with m the mass of the molecules and 
kB the Boltzmann constant (we assume 1: = ~$1~ 
instead of l;b = v2r2 because 1, is in fact a projection 
of a length on the direction of propagation of the 
wave. In this case one has 

z,r = z-(kT/rn)(X)-‘z2. 

If ones takes into account that in kinetic theory 
x = (5/3)(kT/m)z, the effective time for heat relax- 
ation as compared with the collision time is 

Tef = Z - (3/5)r = (2/5)2. 

This yields a higher speed for thermal uses than that 
obtained by the use of r. More detailed evaluation 
could be made from, for instance, the Grad moments 
expansion in kinetic theory [19]. This work is in pro- 
gress. 

An important consequence of the higher speed for 
thermal waves arising from the consideration of all 
higher-order fluxes would be found in the context of 
shock waves in gases. Heuristically, it is known that 
regular signals cannot propagate in a hyperbolic 
medium with speed higher than the highest charac- 
teristic speed 1191. In the 13-moments development in 
kinetic theory this leads to the consequence that shock 
waves cannot have a regular structure for Mach num- 
bers higher than a critical_ value given by 1.65, in 
contrast with experimental evidence, which seems to 
indicate regular structure for higher Mach numbers. 
Some work in progress by our group shows that by 
taking into account the development proposed in this 
paper, the critical Mach number can be raised to 2.86. 
At such high Mach numbers, the thickness of the 
shock is only two or three times the mean-free path, 
and continuum theories are no longer expected to be 
valid. 

Finally, it is worth mentioning, in connection with 
the development (26) for the generalized thermal con- 
ductivity, that continued-fraction expansions of 
generalized transport coefficients are frequently used 
in statistical mechanics. Mori [24] was able to show 
from rather general arguments, by means of pro- 
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jection operator techniques, that continued fraction Recenr Developments in Nonequilihrium Thrrmodlxao- 

expansions have a microscopic bias. its. Springer, Berlin (1984). 
Il. 

Acknowledgements-We thank Professor J. Casas-Vazquez 13. 

for his permanent interest in our work. We also acknowledge 
the financial support of the Direction General de Inves- 
tigacion Cientifica y Tecnologica of the Spanish Ministry of 

13. 

Educacibn y Ciencia, under grant PB89-0290. 

R. E. Nettleton, Relaxation theory of thermal conduc- 
tion, Physics Fluids 3, 216 (1960). 
I. Muller and T. Ruggeri (Editors), Kinetic Theor), and 
E.xttxded Thermodynamic.s. Pitagora Editrice, Bolognct 
(1987). 

14. 

S. R. De Groot and P. Mazur, Norzeyuilibrium Thrr- 
modynamics. North-Holland, Amsterdam (1962). 
D. Jou and C. Perez-Garcia, On a Ginzburp-Landau 
equation for the evolution and the fluctuations of heat 
flux. Phvsica A 104. 320.-332 (19801. 
C. Perez-Garcia and D. Jou,~ Thermodynamic aspects 
of continued-fraction expansion in heat conduction, .I. 
PhJs. ‘4 19, 2881-2890 (1986). 
D. Jou and J. Casas-Vazquez, Nonequilibrium absolute 
temperature, thermal waves and phonon hydro- 
dynamics, fhysica A 163,47-58 (1990). 
D. Jou, J. E. Llebot and J. Casas-Vazquez, Irreversible 
thermodynamic approach to nonequilibrium heat Ruc- 

tuations, Phys. Reu. A 25, 508-518 (1982). 
J. E. Llebot, D. Jou and J. Casas-Vazquez, .4 thcr- 
modynamic approach to heat and electric conduction in 
solids, Physica A 121, 552-562 (1983). 
H. Grad, Kinetic theory ofgases. In Handbuch der PhJsih 
(Edited by S. Flugge), Vol. XII. Springer, Berlin (1958). 
M. Kranys, Causal theories of evolution and wave 
propagation in mathematical physics, Appi. Me&. Rei-. 
42, 305-322 (1989). 
R. A. Guyer and H. Krumhansl, Dispersion relation for 
second sound in solids, Phy.r. Rer. A 133, 141 I 1417 
(1964). 
P. Gianozzi, C. Grosso, S. Moroni and G. Pastore- 
Parravicini, The ordinary and matrix continued fractions 
in the thermodynamic analysis of Hermitian and relax- 
ation operators, ,4ppl. Numer. Math. 4, 273-295 (1988) 
2. Banach and S. Pierarski, Irreducible tensor descrip- 
tion, J. Math. Phys. 30, 18261834 (1989). 
II. Mori, A continued-fraction representation of the 
time-correlation functions. Pro,q. Theor. Pkys. 33, 432 
(1965). 

I. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 

9. 

10. 

REFERENCES 
15. 

D. Jou, J. Casas-Vazquez and G. Lebon, Extended irre- 
versible thermodynamics, Rep. Prog. Phys. 51, 1105 16. 
1179 (1988). 
D. D. Joseph and L. Preziosi, Heat waves, Rev. Mod. 
fhys. 61,41--73 (1989). 17. 
D. E. Glass, M. N. Ozisik and B. Vick, Non-Fourier 
effects on transient temperature resulting from periodic 
on -off heat flux. Int. J. Heat Mass Transfer 30. 1623 18. ./ 
1631 (1987). 
D. Y. Tzou, Thermal shock waves induced by a moving 
crack-a heat flux formulation, ht. J. Heat Mass Trans- 19. 
fer 33, 887-896 (1990). 
J. Gembarovic and V. Majernik, Non-Fourier propa- 20. 
gation of heat pulses in finite medium, ht. J. Heat Mass 
Transfer 31, 1073-1080 (1988). 
S. Sieniutycz, The inertial relaxation terms and the vari- 21. 
ational principle of least action type for nonstationary 
energy and mass diffusion, Int. J. Heat Mass Transfer 
26, 55563 (1983). 22. 
I. Muller, Thermodynamics. Pitman, London (1985). 
I. Gydrmati, On the wave approach to thermodynamics 
and some problems in non-linear theories, J. Non- 
Equilib. Thermodyn. 2, 233.-245 (1977). 23. 
L. S. Garcia-Cohn, Extended irreversible thermo- 
dynamics : scope and limitations, Rea. Mex. Fis. 34, 344 24. 
(1989). 
J. Casas-Vazquez, D. Jou and G. Lebon (Editors). 

FLUX D’ORDRE SUPERIEUR ET VITESSE DES ONDES THERMIQUES 

R&sum&En accord avec le formalisme de la thermodynamique irreversible &endue (extended irreversible 
thermodynamics), on obtient une hitrarchie d’equations d’tvolution pour les flux thermiques d’ordre 
superieur. On etudie l’influence des flux d’ordre supirieur sur la vitesse des ondes thermiques au second, 

troisieme et quatritme ordre, et a la limite asymptotique d’un nombre infini de flux d’ordre suptrieur. 

STROMDICHTEN HijHERER ORDNUNG UND DIE GESCHWINDIGKEIT VON 
TEMPERATURWELLEN 

Zusammeufassung-Durch Anwendung der Regeln der erweiterten irreversiblen Thermodynamik wird 
eine Hierarchic von Entwicklungsgleichungen fiir Stromdichten hijherer Ordnung bei der Warmeleitung 
entwickelt. Der EinfluR der Stromdichten hoherer Ordnung auf die Ausbreitungsgeschwindigkeit von 
Temperaturwellen wird anhand von Nahrungslosungen zweiter, dritter und vierter Ordnung untersucht, 

ebenso das asymptotische Verhalten von Stromdichten unendIichgroBer Ordnung. 

HOTOKM BbICOKOFO IIOPIlAKA II CKOPOCTb TEITJIOBbIX BOJIH 

ArmoTar@r%--Ha OCHoBe t$OpMiUUi3Ma TeOpHSi TepMOD%HaMBKIl Iieo6paTEiMbIX IIpOIJeCCOB IIOJIyYeHa 

nepapxna 3~omounomibm ypamietmii Ann IIoTOKOB nb~co~oro nopnnKa B cnynae TennonpoeomocTn. 

kiCCJIe~yeTCnBJlEiKHse3THx IIOTOKOBHaCKOp0CTbTeMOBbIXBOJIH BIIpEi6JIEi;rteHEiKx BTOpOrO,TpeTberO 

U~eTBepTO~O~OpK~~,~T~K~e~~CHM~TOTH¶eCKOM~~~~~e~OTOKOB6~KoHe~HoBblCOKO~O~O~K~Ka. 


